+ - 0:00:00
Notes for current slide
Notes for next slide

Simple Linear Regression

Foundation

Prof. Maria Tackett

1

General form of model

Y=f(X)+ϵ

3

General form of model

Y=f(X)+ϵ

Y: response variable

3

General form of model

Y=f(X)+ϵ

Y: response variable

X: predictor variable

3

General form of model

Y=f(X)+ϵ

Y: response variable

X: predictor variable

f: fixed but unknown function

3

General form of model

Y=f(X)+ϵ

Y: response variable

X: predictor variable

f: fixed but unknown function

ϵ: random error

3

Simple linear regression

4

Simple linear regression

Y=Model+Error=f(X)+ϵ=μY|X+ϵ=β0+β1X+ϵ

4

Y=β0+β1X+ϵ


where the errors are independent and normally distributed ϵN(0,σ2ϵ)

5

Y|XN(β0+β1X,σ2ϵ)

6

Y|XN(β0+β1X,σ2ϵ)

7

Y|XN(β0+β1X,σ2ϵ)

8

Regression standard error

Once we fit the model, we can use the residuals to calculate the regression standard error

ˆσϵ=ni=1(yiˆyi)2n2=ni=1e2in2

9

Standard error of ˆβ1

SEˆβ1=ˆσϵ1(n1)s2X

10

11
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow